Alternate Scenarios and Support to Revised Staff Natural Gas Assessment

2007 Integrated Energy Policy Committee Workshop
August 16, 2006

Catherine Elder, Senior Director

R. W. Beck Role in Support of CEC Natural Gas Assessment

- Beck provided alternative supply and demand scenarios to help the Commission evaluate the range of uncertainty
- Also provided some oversight, trouble-shooting and realitychecking of NARG model results
- Participated somewhat in reviewing Scenarios 3B and 5B evaluating impact of lower natural gas demand on gas prices

Uncertainty

- Forecasts end up being wrong because the assumptions turn out to be wrong, often because they depend upon outcomes that cannot be known in advance
- Beck's view is that best approach is a stochastic model
 - Appropriately recognizes that the correct values of the key variables are unknown and lie within a probability distribution of possible values
 - Allows the "answer" to lie within a range instead of producing a point estimate
- CEC has not used NARG that way previously, although conversations with Altos suggest it is possible
- Alternative is to run many, many iterations to create bounds around reference case – a Gas "Scenarios Project"
 - Time consuming and resource intensive
 - Change to reference case means re-running all the iterations

Two Key Uncertainty Variables: Demand and Supply

- The values assumed for natural gas supply and demand are both highly uncertain and debatable
- Key factor affecting demand is how much gas gets burned to generate electricity
 - Scenarios Project demonstrates lower natural gas demand with increasing RPS and EE
 - Driven by emissions regulation, allowance values, and changing capital costs for coal versus gas, IGCC, sequestration, renewables, energy efficiency/demand response and even willingness to consider nuclear option
 - Staff forecast is similar to EIA's until 2011, then diverges by 0.5 to 0.75 Tcf per year
- Beck analysis suggests could be a range of plausible demand around the staff Reference Case of 1.5 to 2.0 Tcf either side

Natural Gas Supply

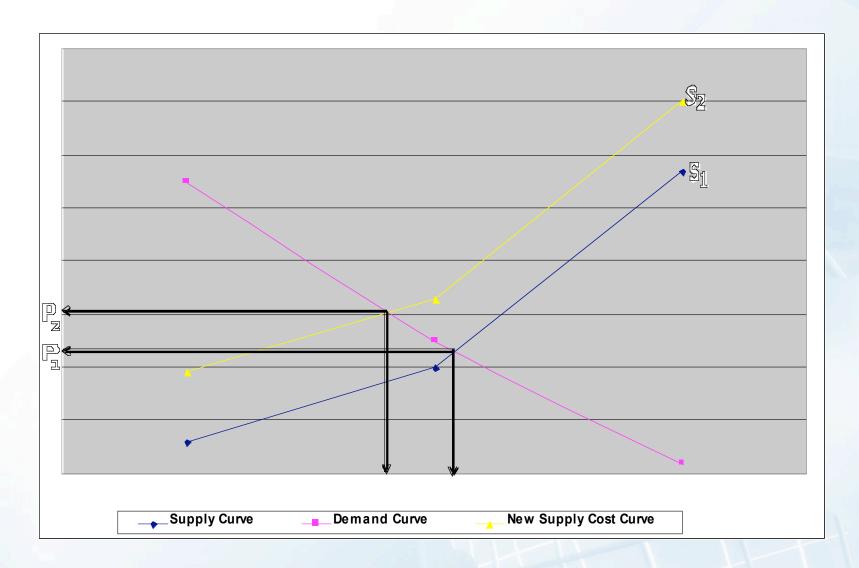
- Claims that U.S. can't produce enough natural gas oversimplify reality – more sophisticated understanding leads to better policy
- Reserve base grown consistently reserve additions replace production but many are unconventional reserves
- Chicken and egg on falling production per well: can't produce enough versus drilling wells that produce less due to financial pressure for quick returns
- Drilling overseas not because we don't have enough gas here but because costs lower/profits higher elsewhere -- LNG is conscious choice by producers about where to invest their E&P budgets
- Result is that LNG coming in as price-taker reduces need to produce domestic natural gas and caps prices

Supply Heuristic

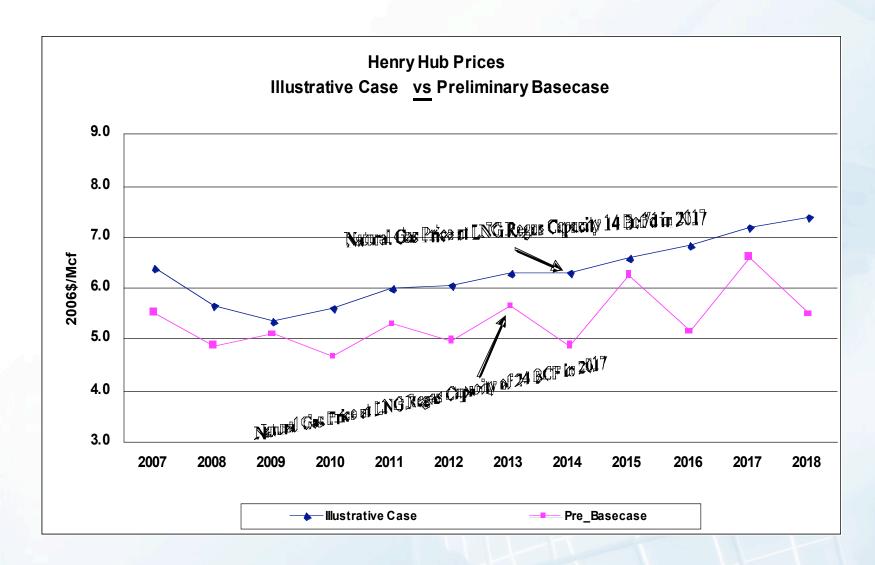
- Constructed simple model to calculate supply and illustrate impact of key variables on supply
 - depletion, wells drilled, production per well = domestic production
 - if add demand, can determine how much LNG is needed
 - heuristic makes no comment as to resulting prices
- Change any of these variables and determine impact on production
- Purpose is to capture potential range of plausible supply outcomes and assess implications of Reference Case

Supply Heuristic Results

	Preliminary Case	Reference Case	High Supply	Low Supply
Aggregate Depletion Loss	-2%	-2%	-2%	-2%
No. of Wells Drilled per Year by 2	45,212	59,728	59,728	30,000
Production per New Well	-4%	-4%	0%	-4%
Canadian Imports	-2.80%	-1.75%	-1.23%	-1.75%
GAP (LNG)	7.1	4.5	0	10.5


Staff Reference Case Broad Results

- Key outcome in the Preliminary Case was seeing very large amount of LNG come to the U.S. -- > 20% of overall supply mix
- Even LNG developers said that was too much
- Yet was economic result: Model's economic dispatch sequenced LNG ahead of domestic production
- Price was set at marginal price on the domestic supply curve (LNG a price taker)
- To develop revised case, staff constrained LNG import capacity to the LNG regasification terminals existing, under construction or approved for expansion
- Less LNG into U.S. means we move up the domestic supply curve to produce more and prices increase accordingly


Opportunity Cost of Less LNG

Impact on Prices

